Publications

The following references are sorted by product and present a selection of publications based on the use of our MBE components and systems.

Feedback on operational experience and scientific achievements is highly valued for steady product improvement and advice to the customer.

The following references are sorted by product and present a selection of publications based on the use of components from Dr. Eberl MBE-Komponenten GmbH.

The entire list of publications issued by Dr. Karl Eberl is presented in section AboutUs .

  1. Independence of surface morphology and reconstruction during the thermal preparation of perovskite oxide surfaces
    Maren Jäger, Ali Teker, Jochen Mannhart, Wolfgang Braun; Appl. Phys. Lett. 112, 111601 (2018)
  1. Fast CIGS co-evaporation processes by controlled rapid ramping of thermal evaporation sources to very high rates
    A. Marienfeld, C.Eisele, H.Schuler; EUPVSEC2013 paper 3BV.5.17 (2013)
  1. The InP (001)(2x1)Surface:A hydrogen terminated structure
    O.G. Schmidt et al.; Phys. Rev. Lett.90, 126101 (2003)

  2. MBE growth of high-quality InP for GaInAs/InP heterostructures using incongruent evaporation of GaP
    H. Künzel, J. Böttcher, P. Harde, R. Maessen; Journal of Crystal Growth 175/176 (1997) 940-944

  3. Nanoscale InP islands embedded in InGaP
    A. Kurtenbach et al.; Appl. Phys. Lett. 69,361 (1996)

  4. Optical gain and lasing in self-assembled In/GaInP quantum dots
    A. Moritz et al.; Appl. Phys. Lett. 69(2), 212,(1996)

  5. Growth of high-quality InGaP and application for modulation-doped structure by molecular beam epitaxy with a GaP source
    T. Shitara, K. Eberl, J. Dickmann, C. Wölk; Journal of Crystal Growth 150 (1995) 1261-1265

  1. P-delta-doping in Si MBE
    C. Tolksdorf, I. Eisele,Uni-BW Munich; to be published

  2. Multiple delta-doped layer structures for silicon power MOSFETs
    C. Tolksdorf, J. Schulze, T. Sulima, I. Eisele, G. Deboy; 60th DRC. Conference Digest Device Research Conference (2002), https://doi.org/10.1109/DRC.2002.1029526

  3. High room temperature peak to valley current ratio in Si based Esaki diodes
    R. Duschel, O.G. Schmidt, G. Reitemann, E. Kasper, K. Eberl; Electronics Letters 35, 1111(1999)

  4. Heavy phosphorus doping in mbe grown silicon with a GaP decomposition source
    G. Lippert et al.; Appl. Phys. 66 (23)3197 (1995)

  1. Encapsulation of phosphorus dopants in silicon for the fabrication of a quantum computer
    L. Oberbeck, N.J. Curson, M.Y. Simmons, R. Brenner, A.R. Hamilton, S.R. Schofield; Appl. Physics Letters 82, 17 (2002)

  2. Comparison of P and Sb as n-dopants for Si molecular beam epitaxy
    J.F. Nützel and G. Abstreiter; Journal of Applied Physics 78, 937-940 (1995)

  3. Microscopic symmetry properties of (001) Si/Ge monolayer superlattices
    K. Eberl, W. Wegscheider, R. Schorer, G. Abstreiter; Physical Review B-Condensed Matter, (1991) 43, 6, pp. 5188-5191

  4. Group-IV element (Si, Ge and alpha-Sn) superlattices - low-temperature MBE
    K. Eberl, W. Wegscheider, G. Abstreiter; Journal of Crystal Growth (1991) vol. 111, no. 1-4, pp. 882-888

  5. Transmission electron-microscopy of short-period Si/Ge strained-layer superlattices on Ge substrates
    W. Wegscheider, K. Eberl, H. Cerva, H. Oppolzer; Appl. Physics Letters (1989) vol. 55, no. 5, pp. 448-450>

  1. Encapsulation of phosphorus dopants in silicon for the fabrication of a quantum computer
    L. Oberbeck, N.J. Curson, M.Y. Simmons, R.Brenner, A.R. Hamilton, S.R. Schofield; Appl. Phys. Lett. 82, 17 (2002)

  2. Comparison of P and Sb as n-dopants for Si molecular beam epitaxy
    J.F. Nützel and G. Abstreiter; Journal of Applied Physics 78, 937-940 (1995)

  3. Microscopic symmetry properties of (001) Si/Ge monolayer superlattices
    K. Eberl, W. Wegscheider, R. Schorer, G. Abstreiter; Phys. Rev B Condens. Matter 43, 6, pp. 5188-5191 (1991)

  4. Group-IV element (Si, Ge and alpha-Sn) superlattices - low-temperature MBE
    K. Eberl, W. Wegscheider, G. Abstreiter; Journal of Crystal Growth vol. 111, no. 1-4, pp. 882-888 (1991)

  5. Transmission electron-microscopy of short-period Si/Ge strained-layer superlattices on Ge substrates
    W. Wegscheider, K. Eberl, H. Cerva, H. Oppolzer; Appl. Phys. Lett. vol. 55, no. 5, pp. 448-450 (1989)

Publications about the preparation of Si1-xCx and Si1-x-yGexCy alloys on Si with SUKO:

  1. Photoluminescence of tensile strained, exactly strain compensated, and compressively strained Si1-x-yGexCy layers on Si
    O.G. Schmidt, K. Eberl; Phys. Rev. Lett. Vol.80, no.15, pp. 3396-9 (1998)

  2. Si1-yCy -alloy layers. A novel semiconductor material
    K. Brunner et al.; Phys.Blätter 52,1237(1996)

  3. Near-band-edge photoluminescence from pseudomorphic Si1-yCy / Si quantum well structures
    K. Brunner, K. Eberl, W. Winter; Phys. Rev. Lett. Vol 76, 2 pp. 303 (1996)

  4. H. J. Osten, et al.; Appl. Phys. Lett. (1994) / MBE Conf. 1994 Osaka

  5. Strain symmetrization effects in pseudomorphic Si1-yCy/Si1-xGex superlattices
    K. Eberl et al.; Appl. Phys. Lett. 64, 739 (1994)

  6. The growth and characterization of Si1−yCy alloys on Si(001) substrate
    K. Eberl et al.; J. V. S. Techn. B10, 934 (1992)

  7. Growth and strain compensation effects in the ternary Si1-x-yGexCy alloy system
    K. Eberl, S.S. Iyer, S. Zollner, J.C. Tsang, F.K. Legoues;  Appl. Phys. Lett. 60, 24, pp. 3033 (1992)

  8. Synthesis of Si1-yCy alloys by molecular-beam epitaxy
    S.S. Iyer, K. Eberl, M.S. Goorsky, F.K. Legoues, J.C. Tsang, F. Cardone; Appl. Phys. Lett. 60, 3, pp. 356 (1992)

Publication about the preparation of Graphene with SUKO:

  1. Direct graphene growth on insulator
    Gunther Lippert, et. al.; Phys. Status Solidi B, 1–5 (2011)
  1. An experimental study of the surface formation of methane in interstellar molecular clouds
    D. Qasim, G. Fedoseev, K. Chuang et al.; Nat Astron (2020), https://doi.org/10.1038/s41550-020-1054-y

  2. An atomic carbon source for high temperature molecular beam epitaxy of graphene
    J.D. Alber et al.; Scientific Reports 7, 6598 (2017)

  3. A simple and clean source of low-energy atomic carbon
    S. A. Krasnokutski et al.; Appl. Phys. Lett. 105, 113506 (2014)

  1. Molecular beam epitaxy growth and temperature-dependent electrical characterization of carbon-doped GaAs on GaAs(1 1 1)B
    T. Henksmeier, S. Shvarkov, A. Trapp, D. Reuter; Journal of Crystal Growth 512, pp. 164–168 (2019)

  2. Carbon doped symmetric GaAs/AlGaAs quantum wells with hole mobilities beyond 10 6 cm 2 /Vs
    C. Gerl, S. Schmult, H.-P. Tranitz, C. Mitzkus, W. Wegscheider; Appl. Phys. Letters (2005) 86 25, 2105; 86 20, 2105

  3. 1.3 µm GaInAsN Laserdiodes with improved High Temperature Performance
    M. Fischer, D. Gollub, A. Forchel; Jpn.J.Appl.Phys.Vol.41 (2002) pp. 1162-1163

  1. Infrared/terahertz spectra of the photogalvanic effect in (Bi,Sb)Te based three-dimensional topological insulators
    H. Plank, J. Pernul, S. Gebert, S. N. Danilov, J. König-Otto, S. Winnerl, M. Lanius, J. Kampmeier, G. Mussler, I. Aguilera, D. Grützmacher, S.D. Ganichev; Physical review materials 2, 024202 (2018)

  2. Growth-Rate-Dependent Properties of GaSb/GaAs Quantum Dots on Ge Substrate
    Zon, Pakawat Phienlumlert, et. al.; Phys. Status Solidi A, 10 (2019)

  1. InGaP/InGaAs/GaAs High Electron Mobility Transistor Structure Grown by Solid Source Molecular Beam Epitaxy Using GaP as Phosphorous Source
    M. Missous, A. A. Aziz, A. Sandhu; Jpn. J. Appl. Phys. 36, L647 (1997)

  2. Red light emitting InP/GaInP quantum dot injection laser
    M. K. Zundel, N. Y. Jin-Phillipp, K. Eberl, T. Riedl, E. Fehrenbacher, A. Hangleiter; Appl. Phys. Lett. 73, 1784 (1998)

  3. A Comparative Study of an Inp Quantum Dot Laser and A GaxIn1-X)P Quantum Well Laser
    Y. M. Manz, O. G. Schmidt; Mat. Res. Soc. Symp. Proc. 722, 325 (2002)

  4. Optical and structural anisotropy of InP/GaInP quantum dots for laser applications
    Y. M. Manz, A. Christ, O. G. Schmidt, T. Riedl, A. Hangleiter; Appl. Phys. Lett. 83, 887 (2003)

A basic description of the cell design as well as some results from the characterization were published in the following papers:

  1. Formation of an atomic hydrogen beam by a hot capillary
    K.G. Tschersich and V. von Bonin; J. Appl. Phys. 84, 4065 (1998)

  2. Intensity of a source of atomic hydrogen based on a hot capillary
    K.G. Tschersich; J. Appl. Phys. 87, 2565 (2000)

  3. Design and characterization of a thermal hydrogen atom source
    K.G. Tschersich, J.P. Fleischhauer and H. Schuler;  J. Appl. Phys. 104, 034908 (2008)

Publication respective low temperature surface cleaning of InP and GaAs:

  1. Low-Temperature Cleaning of GaAs Substrate by Atomic Hydrogen Irradiation
    T. Sugaya, et al.; Jpn. J. Appl. Phys. 30 (1991) L402

Publications respective Si substrate preparation / GaAs on Si:

  1. Low Dislocation Density GaAs on Vicinal Si(100) Grown by Molecular Beam Epitaxy with Atomic Hydrogen Irradiation
    H. Shimomura, et al.; Jpn. J. Appl. Phys. 31 (1992) L628

  2. High-Quality GaAs Films on Si Substrates Grown by Atomic Hydrogen-Assisted Molecular Beam Epitaxy for Solar Cell Applications
    Y. Okada, et al.; Jpn. J. Appl. Phys. 32 (1993) L1556

  3. Reduction Mechanism of Dislocation Density in GaAs Films on Si Substrates
    H. Shimomura, et al.; Jpn. J. Appl. Phys. 32 (1993) 632

Publications respective promotion of 2D growth of GaAs:

  1. Reduction Mechanism of Dislocation Density in GaAs Films on Si Substrates
    H. Shimomura, et al.; Jpn. J. Appl. Phys. 32 (1993) 632

  2. Enhanced Two-Dimensional Growth of GaAs on InP by Molecular Beam Epitaxy with Atomic Hydrogen Irradiation
    Y.J. Chun, et al.; Jpn. J. Appl. Phys. 32 (1993) L1085

Publications respective selective epitaxial growth in MBE and GS MBE:

  1. Selective Growth of GaAs by Molecular Beam Epitaxy
    T. Sugaya, et al.; Jpn. J. Appl. Phys. 31 (1992) L713

  2. Selective Growth of InGaAs/InP Layers by Gas Source Molecular Beam Epitaxy with Atomic Hydrogen Irradiation
    N. Kuroda, et al.; Jpn. J. Appl. Phys. 32 (1993) L1627

  1. Etching of Bacillus atrophaeus by oxygen atoms, molecules and argon ions
    J. Benedikt, C. Flötgen, G. Kussel, V. Raballand, A. von Keudell; Journal of Physics: Conference Series 133, 012012 (2008)

  2. Inactivation of Bacillus atrophaeus and of Aspergillus niger using beams of argon ions, of oxygen molecules and of oxygen atoms
    V. Raballand, J. Benedikt, J. Wunderlich, A. von Keudell; J. Phys. D: Appl. Phys. 41, 115207 (2008)

  3. Intensity of a source of atomic hydrogen based on a hot capillary

K.G. Tschersich; J. Appl. Phys. 87, 2565 (2000).
  1. Formation of an atomic hydrogen beam by a hot capillary
    K.G. Tschersich and V. von Bonin; J. Appl. Phys. 84, 4065 (1998).
  1. Hierarchical self-assembly of GaAs / AlGaAs quantum dots
    A. Rastelli, S. Stufler, A. Schliwa, R. Songmuang, C. Manzano, G. Costantini, K. Kern, A. Zrenner, D. Bimberg and O.G. Schmidt; Physical Review Letters, 92, 166104 (2004)

  2. Self-assembled nanoholes and lateral QD bi-molecules by molecular beam epitaxy and atomically precise in situ etching
    S. Kiravittaya, R. Songmuang, N.Y. Jin-Phillipp, S. Panyakeow, O.G. Schmidt; J.Cryst Growth 251: 258-263 (2003)

  3. Formation of lateral quantum dot molecules around self-assembled nanoholes
    R. Songmuang, S. Kiravittaya, O.G. Schmidt; APL 82 No.17: 2892-2894 (2003)

  4. In-situ etching and regrowth in III/V MBE for future nanotechnology
    H. Schuler, M. Keller, M. Lipinski, K. Eberl, J. Weis, K. v. Klitzing; J. Vac. Sci. Technol 15: (2) 169-177 (Feb 2000)

  5. Systematic growth studies of narrow constrictions formed by molecular beam epitaxy on…
    M. Lipinski, H. Schuler, P. Veit, K.. Eberl; MAT SCI ENG B-SOLID 74: (1-3) 25-31 (May 1 2000)

  6. In situ etching and regrowth in III-V molecular beam epitaxy for future nanotechnology
    H. Schuler, M. Keller, M. Lipinski, K. Eberl; J. Vac. Sci. Technol B 18: (3) 1557-1561 (May-Jun 2000)

  7. In situ etching with AsBr3 and regrowth in molecular beam epitaxy
    H. Schuler, T. Kaneko, M. Lipinski and K. Eberl; Semicond. Sci. Technol. 15, 169 (2000)

  8. Atomic layer in-situ etching and MBE-regrowth
    K. Eberl, M. Lipinski, H. Schuler; J CRYST GROWTH 202: 568-573 (May 1999)

  9. Size and shape modification of self assembled InAs quantum dots and stacked layers by in-situ etching
    H. Schuler and K. Eberl; Microelectronics Journal 30, 341 (1999)

  10. Size modification of self-assembled InAs quantum dots by in-situ etching
    H. Schuler, N.Y. Jin-Phillipp, F. Phillipp, K. Eberl; Semiconductor Science and Technol. 13, 1341 (1998)

  11. The effect of surface reconstruction on the surface morphology during in-situ etching
    M. Ritz, T. Kaneko, K. Eberl; Appl.Phys. Lett. 71, 695 (1997)

  1. Alloyed ohmic contacts to two-dimensional electron system in AlGaAs/GaAs heterostructures down to submicron length scale
    O. Göktas, J. Weber, J. Weis, K. von Klitzing; Physica E 40 (2008);1579-1581

Please ask for a list of user references on our MBE products, for example effusion cells, manipulators, etc.